We considered five major cell subsets: (1) myeloid, (2) T, (3) B and plasma, (4) stromal, and (5) epithelial cells. We classified cells into these subsets according to their gene expression. We consider in this file the cells classified as epithelium. We reanalyze and QC the data,and look for the refined clusters.
library(Seurat)
library(plyr)
library(dplyr)
library(ggplot2)
library(DropletUtils)
library(celda)
library(SingleCellExperiment)
library(scater)
library(scran)
library(scDblFinder)
library(viridis)
library(MASS)
library(patchwork)
library(readr)
library(clustree)
<- function(x, y, ...) { # function from https://slowkow.com/notes/ggplot2-color-by-density/
get_density <- MASS::kde2d(x, y, ...)
dens <- findInterval(x, dens$x)
ix <- findInterval(y, dens$y)
iy <- cbind(ix, iy)
ii return(dens$z[ii])
}
<- function(l) { # function from https://stackoverflow.com/a/24241954
fancy_scientific # turn in to character string in scientific notation
<- format(l, scientific = TRUE)
l # quote the part before the exponent to keep all the digits
<- gsub("^(.*)e", "'\\1'e", l)
l # turn the 'e+' into plotmath format
<- gsub("e", "%*%10^", l)
l # return this as an expression
parse(text=l)
}
setwd("~/000_GitHub/ibd-bcn_single_cell")
source('source/functions_scrnaseq.R')
source('source/colors.R')
setwd('~/000_GitHub/ibd-bcn_single_cell/Analysis of our data/02_Samples_Together/')
<- readRDS('SUBSETS/FROM_SAMPLES_TOGETHER/epi.RDS') epi
These are the clusters we selected as epithelial in the “02_Data_to_subsets” file.
DimPlot(epi, label=T, group.by = 'RNA_snn_res.0.1')
Distribution of cells in scatter plot (nfeatures/percent.mt) to check where are the majority of our cells. We can see the dots colored by density using the function get_density shown in Load extra functions and sources.
<- epi@meta.data
meta $density <- get_density(meta$percent.mt, meta$nFeature_RNA, n = 100)
metaggplot(meta) +
geom_point(aes(percent.mt, nFeature_RNA, color = density), size = 0.2) +
scale_color_viridis() + theme_classic() +
scale_y_log10()+
geom_vline(xintercept = 65, linetype = 2, color = 'gray')+
theme(text = element_text( size = 12),
axis.title = element_text( size = 12),
legend.text = element_blank())
We analyzed the data using different cutoffs for the percent.mt (data not shown) and finally decided that 65% was a reasonable choice for this dataset.
Right now epi
has 28287 features across 12999 cells.
Nevertheless, many cells express genes that we know should not be
expressed by epithelial cells. We will remove those cells.
<- c('CD3E','CD3D','CD3G', 'C1QA', 'DERL3', 'MS4A1')
genes for (gene in genes) {
<- FetchData(epi, vars = c('nCount_RNA', 'nFeature_RNA', gene))
jd <- jd[order(jd[,ncol(jd)]),]
jd <- ggplot(jd, mapping = aes_string(x = 'nFeature_RNA', y = 'nCount_RNA', color = gene))+
k geom_point() + theme_classic() + scale_color_viridis(alpha = 0.8) + scale_y_log10() + scale_x_log10()
cat("#### ", gene, "\n"); print(k); cat("\n\n")
}
cat("#### code removal \n")
<- epi@assays$RNA@counts
counts <- grep("CD3E$|CD3D$|CD3G$|MS4A1$|DERL3|^C1QA$",rownames(epi))
p <- which(Matrix::colSums(counts[p,])>0)
pp <-setdiff(colnames(epi), names(pp))
xx <- subset(epi,cells = xx)
epi cat('\n\n')
We have observed that due to normalization, there’s high Ig gene expression in cells that did not have high counts of Ig genes. As an example:
<- FeaturePlot(epi, features = 'IGHA1', slot = 'counts') + labs(title='counts') + theme_classic()
a <- FeaturePlot(epi, features = 'IGHA1', slot = 'data') + labs(title= 'data') + theme_classic()
b wrap_plots(a,b, nrow = 1)
We remove the Ig genes from the dataset in all subsets except for the plasma and B cells subset.
<- rownames(epi)[c(grep("^IGH",rownames(epi)),
gg grep("^IGK", rownames(epi)),
grep("^IGL", rownames(epi)))]
<- setdiff(rownames(epi),gg)
genes <- subset(epi,features = genes) epi
We remove the genes without expression from the dataset.
<- epi@assays$RNA@counts
counts <- which(Matrix::rowSums(counts)==0)
pp <-setdiff(rownames(epi), names(pp))
xx <- subset(epi, features = xx) epi
<- seurat_to_pca(epi)
epi
<- ElbowPlot(epi, ndims = 100) +
a geom_vline(xintercept = 22, colour="#BB0000", linetype = 2)+
labs(title = paste0('Elbowplot')) + theme_classic()
<- FindNeighbors(epi, dims = 1:22)
epi<-RunUMAP(epi, dims=1:22)
epi<- DimPlot(epi, group.by = 'sample_name') +
b labs(title = '22 PCS') +
theme_classic() +
theme(legend.position = 'bottom')
+b) / guide_area() +
(aplot_layout(heights = c(0.7,0.3),guides = 'collect')
# dir.create('Markers')
# dir.create('Markers/Epithelium')
<- '~/000_GitHub/ibd-bcn_single_cell/Analysis of our data/02_Samples_Together/SUBSETS/Markers'
path setwd(path)
<- resolutions(epi,
epi workingdir = path,
title = 'Epithelium/Markers_Epithelium_')
<- '~/000_GitHub/ibd-bcn_single_cell/Analysis of our data/02_Samples_Together/SUBSETS/ON_THEIR_OWN/'
path setwd(path)
saveRDS(epi, file = paste0(path,'epi_filtered.RDS'))
<- '~/000_GitHub/ibd-bcn_single_cell/Analysis of our data/02_Samples_Together/SUBSETS/ON_THEIR_OWN/'
path <- readRDS(file = paste0(path,'epi_filtered.RDS'))
epi for(i in c('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5')){
<-DimPlot(epi, group.by = paste0('RNA_snn_res.',i), label=T) +
j theme_classic() +
theme(legend.position = 'none', axis.title = element_blank()) +
labs(title = paste0('Resolution ',i))
cat("##### ", i, "\n"); print(j); cat("\n\n")
}
clustree(epi, prefix = 'RNA_snn_res.') + guides(size = 'none', shape = 'none', edge_colour = FALSE, edge_alpha = FALSE) + theme(legend.position = 'right')
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> = "none")` instead.
setwd('~/000_GitHub/ibd-bcn_single_cell/Analysis of our data/02_Samples_Together/SUBSETS/')
for(i in c('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5')){
<- read_delim(
marker_genes paste0("Markers/Epithelium/Markers_Epithelium__markers_resolution_",i,".csv"),
delim = ";", escape_double = FALSE, locale = locale(decimal_mark = ",",
grouping_mark = "."), trim_ws = TRUE)
<- marker_genes %>%
top2 ::group_by(cluster)%>%
dplyr::slice(1:2)
dplyr<- unique(top2$gene)
top2_g
<- DotPlot(epi, features = top2_g, group.by = paste0('RNA_snn_res.', i)) +
j theme_classic() +
theme(axis.text.x = element_text(angle=90),
axis.title = element_blank()) +
NoLegend() +
labs(title = paste0('Resolution ',i))
cat("##### ", i, "\n"); print(j); cat("\n\n")
}
## Rows: 2738 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 3404 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#####
0.3
## Rows: 5222 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#####
0.5
## Rows: 6116 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#####
0.7
## Rows: 6976 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#####
0.9
## Rows: 9302 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#####
1.1
## Rows: 9857 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#####
1.3
## Rows: 11316 Columns: 7
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (1): gene
## dbl (6): p_val, avg_log2FC, pct.1, pct.2, p_val_adj, cluster
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#####
1.5
$annotation_refined <- plyr::mapvalues(x = epi$RNA_snn_res.0.7,
epifrom = 0:14,
to = c("Epithelium Ribhi",
"PLCG2 colonocytes",
"Goblet",
"Inflammatory colonocyte",
"Colonocyte 1",
"Laminin colonocytes",
"Colonocyte 2",
"Cycling TA",
"Secretory progenitor",
"Tuft cells",
"Mature goblet",
"Epithelium Ribhi",
"BEST4 OTOP2",
"Paneth-like",
"Enteroendocrine")
)
$annotation_intermediate <- plyr::mapvalues(x = epi$RNA_snn_res.0.7,
epifrom = 0:14,
to = c("Epithelium Ribhi",
"Colonocytes",
"Goblet",
"Inflammatory colonocyte",
"Colonocytes",
"Colonocytes",
"Colonocytes",
"Cycling TA",
"Secretory progenitor",
"Tuft cells",
"Goblet",
"Epithelium Ribhi",
"BEST4 OTOP2",
"Paneth-like",
"Enteroendocrine")
)
<- DimPlot(epi, group.by = 'annotation_intermediate', label = T, repel=T) + NoLegend()
a <- DimPlot(epi, group.by = 'annotation_refined', label = T, repel=T, cols = cols_epi) +
b NoLegend()
+b a
saveRDS(epi, file = '~/000_GitHub/ibd-bcn_single_cell/Analysis of our data/02_Samples_Together/SUBSETS/ON_THEIR_OWN/epi_annotated.RDS')
head(epi@meta.data)
## orig.ident nCount_RNA nFeature_RNA sample doublet Health sample_name Health_2 percent.mt
## SC_002_AAAGATGTCGAATCCA-1 SC 556 226 SC_002 singlet HC HC 1 HC 30.84577
## SC_002_AAAGTAGAGAGGTACC-1 SC 862 420 SC_002 singlet HC HC 1 HC 24.85616
## SC_002_AAAGTAGAGCCGATTT-1 SC 2478 553 SC_002 singlet HC HC 1 HC 11.77413
## SC_002_AACCGCGTCGGAATCT-1 SC 1536 675 SC_002 singlet HC HC 1 HC 11.73800
## SC_002_AACTCAGCACCCTATC-1 SC 2488 633 SC_002 singlet HC HC 1 HC 56.04000
## SC_002_AACTGGTCAGTATCTG-1 SC 2665 757 SC_002 singlet HC HC 1 HC 40.01493
## RNA_snn_res.0.1 seurat_clusters RNA_snn_res.0.3 RNA_snn_res.0.5 RNA_snn_res.0.7
## SC_002_AAAGATGTCGAATCCA-1 2 6 2 2 2
## SC_002_AAAGTAGAGAGGTACC-1 4 12 5 8 9
## SC_002_AAAGTAGAGCCGATTT-1 2 16 2 9 10
## SC_002_AACCGCGTCGGAATCT-1 0 5 0 1 0
## SC_002_AACTCAGCACCCTATC-1 4 12 5 8 9
## SC_002_AACTGGTCAGTATCTG-1 2 10 2 2 2
## RNA_snn_res.0.9 RNA_snn_res.1.1 RNA_snn_res.1.3 RNA_snn_res.1.5 annotation_refined
## SC_002_AAAGATGTCGAATCCA-1 0 9 9 6 Goblet
## SC_002_AAAGTAGAGAGGTACC-1 9 10 11 12 Tuft cells
## SC_002_AAAGTAGAGCCGATTT-1 11 12 15 16 Mature goblet
## SC_002_AACCGCGTCGGAATCT-1 1 8 6 5 Epithelium Ribhi
## SC_002_AACTCAGCACCCTATC-1 9 10 11 12 Tuft cells
## SC_002_AACTGGTCAGTATCTG-1 0 4 1 10 Goblet
## annotation_intermediate
## SC_002_AAAGATGTCGAATCCA-1 Goblet
## SC_002_AAAGTAGAGAGGTACC-1 Tuft cells
## SC_002_AAAGTAGAGCCGATTT-1 Goblet
## SC_002_AACCGCGTCGGAATCT-1 Epithelium Ribhi
## SC_002_AACTCAGCACCCTATC-1 Tuft cells
## SC_002_AACTGGTCAGTATCTG-1 Goblet
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /opt/R/4.1.2/lib/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 LC_COLLATE=C.UTF-8
## [5] LC_MONETARY=C.UTF-8 LC_MESSAGES=C LC_PAPER=C.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] Matrix_1.4-0 nnet_7.3-17 matchSCore2_0.1.0 harmony_0.1.0
## [5] Rcpp_1.0.9 rmarkdown_2.18 pandoc_0.1.0 readxl_1.3.1
## [9] magick_2.7.3 data.table_1.14.2 BiocParallel_1.28.3 RColorBrewer_1.1-3
## [13] ggrepel_0.9.1 ggrastr_1.0.1 usethis_2.1.5 clustree_0.4.4
## [17] ggraph_2.0.5 readr_2.1.2 dplyr_1.0.10 cowplot_1.1.1
## [21] reshape_0.8.8 formulaic_0.0.8 patchwork_1.1.2 MASS_7.3-55
## [25] viridis_0.6.2 viridisLite_0.4.1 scDblFinder_1.8.0 scran_1.22.1
## [29] scater_1.22.0 scuttle_1.4.0 celda_1.10.0 beepr_1.3
## [33] DropletUtils_1.14.2 SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0 Biobase_2.54.0
## [37] GenomicRanges_1.46.1 GenomeInfoDb_1.30.1 IRanges_2.28.0 S4Vectors_0.32.4
## [41] BiocGenerics_0.40.0 MatrixGenerics_1.6.0 matrixStats_0.62.0 ggplot2_3.3.6
## [45] plyr_1.8.7 sp_1.5-0 SeuratObject_4.1.1 Seurat_4.1.0.9007
##
## loaded via a namespace (and not attached):
## [1] rsvd_1.0.5 ica_1.0-3 corpcor_1.6.10 assertive.properties_0.0-4
## [5] foreach_1.5.2 lmtest_0.9-40 rprojroot_2.0.3 crayon_1.5.2
## [9] spatstat.core_2.4-4 rhdf5filters_1.6.0 backports_1.4.1 nlme_3.1-155
## [13] rlang_1.0.6 XVector_0.34.0 ROCR_1.0-11 irlba_2.3.5
## [17] SparseM_1.81 limma_3.50.3 xgboost_1.5.0.2 rjson_0.2.21
## [21] bit64_4.0.5 glue_1.6.2 sctransform_0.3.4 parallel_4.1.2
## [25] vipor_0.4.5 spatstat.sparse_2.1-1 AnnotationDbi_1.56.2 spatstat.geom_2.4-0
## [29] tidyselect_1.1.2 fitdistrplus_1.1-8 tidyr_1.2.1 assertive.types_0.0-3
## [33] zoo_1.8-10 org.Mm.eg.db_3.14.0 xtable_1.8-4 magrittr_2.0.3
## [37] evaluate_0.18 cli_3.4.0 zlibbioc_1.40.0 rstudioapi_0.13
## [41] miniUI_0.1.1.1 bslib_0.4.1 rpart_4.1.16 RcppEigen_0.3.3.9.2
## [45] shiny_1.7.3 BiocSingular_1.10.0 xfun_0.34 clue_0.3-60
## [49] cluster_2.1.2 tidygraph_1.2.1 KEGGREST_1.34.0 tibble_3.1.8
## [53] listenv_0.8.0 Biostrings_2.62.0 png_0.1-7 future_1.28.0
## [57] withr_2.5.0 bitops_1.0-7 ggforce_0.3.3 cellranger_1.1.0
## [61] assertive.base_0.0-9 dqrng_0.3.0 pillar_1.8.1 GlobalOptions_0.1.2
## [65] cachem_1.0.6 fs_1.5.2 GetoptLong_1.0.5 DelayedMatrixStats_1.16.0
## [69] vctrs_0.4.1 ellipsis_0.3.2 generics_0.1.3 tools_4.1.2
## [73] beeswarm_0.4.0 munsell_0.5.0 tweenr_1.0.2 DelayedArray_0.20.0
## [77] fastmap_1.1.0 compiler_4.1.2 pkgload_1.2.4 abind_1.4-5
## [81] httpuv_1.6.6 plotly_4.10.0 rgeos_0.5-9 GenomeInfoDbData_1.2.7
## [85] gridExtra_2.3 enrichR_3.0 edgeR_3.36.0 lattice_0.20-45
## [89] deldir_1.0-6 utf8_1.2.2 later_1.3.0 jsonlite_1.8.3
## [93] multipanelfigure_2.1.2 scales_1.2.1 graph_1.72.0 ScaledMatrix_1.2.0
## [97] pbapply_1.5-0 sparseMatrixStats_1.6.0 lazyeval_0.2.2 promises_1.2.0.1
## [101] doParallel_1.0.17 R.utils_2.12.0 goftest_1.2-3 checkmate_2.0.0
## [105] spatstat.utils_2.3-1 reticulate_1.26 textshaping_0.3.6 statmod_1.4.36
## [109] Rtsne_0.16 uwot_0.1.14 igraph_1.3.4 HDF5Array_1.22.1
## [113] survival_3.2-13 rsconnect_0.8.25 yaml_2.3.6 systemfonts_1.0.4
## [117] htmltools_0.5.3 memoise_2.0.1 locfit_1.5-9.6 graphlayouts_0.8.0
## [121] digest_0.6.30 assertthat_0.2.1 rappdirs_0.3.3 mime_0.12
## [125] RSQLite_2.2.17 future.apply_1.9.1 blob_1.2.3 R.oo_1.25.0
## [129] ragg_1.2.1 splines_4.1.2 labeling_0.4.2 Rhdf5lib_1.16.0
## [133] RCurl_1.98-1.8 assertive.numbers_0.0-2 hms_1.1.1 rhdf5_2.38.1
## [137] colorspace_2.0-3 ggbeeswarm_0.6.0 shape_1.4.6 assertive.files_0.0-2
## [141] sass_0.4.2 RANN_2.6.1 circlize_0.4.14 audio_0.1-10
## [145] fansi_1.0.3 tzdb_0.2.0 brio_1.1.3 parallelly_1.32.1
## [149] R6_2.5.1 grid_4.1.2 ggridges_0.5.3 lifecycle_1.0.3
## [153] formatR_1.12 bluster_1.4.0 curl_4.3.2 jquerylib_0.1.4
## [157] leiden_0.4.3 testthat_3.1.2 desc_1.4.0 RcppAnnoy_0.0.19
## [161] org.Hs.eg.db_3.14.0 iterators_1.0.14 stringr_1.4.1 topGO_2.46.0
## [165] htmlwidgets_1.5.4 beachmat_2.10.0 polyclip_1.10-0 purrr_0.3.4
## [169] gridGraphics_0.5-1 ComplexHeatmap_2.10.0 mgcv_1.8-38 globals_0.16.1
## [173] spatstat.random_2.2-0 progressr_0.11.0 codetools_0.2-18 GO.db_3.14.0
## [177] metapod_1.2.0 MCMCprecision_0.4.0 R.methodsS3_1.8.2 gtable_0.3.1
## [181] DBI_1.1.3 highr_0.9 tensor_1.5 httr_1.4.4
## [185] KernSmooth_2.23-20 vroom_1.5.7 stringi_1.7.8 reshape2_1.4.4
## [189] farver_2.1.1 combinat_0.0-8 BiocNeighbors_1.12.0 scattermore_0.8
## [193] bit_4.0.4 spatstat.data_2.2-0 pkgconfig_2.0.3 corrplot_0.92
## [197] knitr_1.40